TRANSPORT AND TRANSFORMATION OF NITRATE IN A DANISH RIPARIAN LOWLAND

Rasmus Jes Petersen¹, Christian Prinds¹, Bo Vangsø Iversen¹, Charlotte Kjærgaard^{1,2}, Søren Jessen³ and Peter Engesgaard³.

TReNDS

Transport and Reduction of Nitrate in Danish Landscapes at various Scales

¹Dept. of Agroecology, Aarhus University ²SEGES

³Dept. of Geosciences, Copenhagen University

Introduction

- Uniform nitrogen regulation ⇒ spatially differentiated regulation
- Identification of robust and vulnerable areas
- Influence of riparian lowlands?

The Fensholt study site – a riparian lowland

Results - catchment total

		Flow [1000 m³/yr]	N-flux [kg/yr]
Input to wetland	Unmonitored drains / other sources	295	3485
	Precipitation on wetland (atm. dep.)	225	356
	Monitored drains	161	1739
	Groundwater inflow in hillslope	30	194
	Sum in	711	5774
Output from wetland	Catchment outlet	558	3093
	Evapotranspiration from wetland	144	0
	Seepage to deeper groundwater	9	0
	Sum out	711	3093

Nitrogen removal = 2682 kg/yr = 46 % = 103 kg N/ha wetland/yr

Fensholt transect 31

Transect 31 – Nitrogen flow paths

Transect 31 – Nitrogen transformation

Jan 2017

Mar 2017

May 2017

Jul 2017

Nov 2016

Sep 2016

Conclusions

- Riparian lowlands may be either sources or sinks for nitrogen
- Infiltration is essential for nitrate transformation
 - → Controlling factors:
 - Distance from drain outlet to stream
 - Topographical gradient
 - Infiltration area
 - Hydraulic conductivity of peat
 - Hydraulic loading

Thank you

see more at <u>trends.nitrat.dk</u>

